Math 202 - Assignment 6

نویسنده

  • Rory Laster
چکیده

Proof. The discriminant of x + 1 is D = 256 = 2. We have x + 1 ≡ (x + 1) (mod 2). Let p be an odd prime (so p D), and suppose the irreducible factors of x + 1 have degrees n1, n2, . . . , nk. By Corollary 41, the Galois group of x + 1 contains an element with cycle structure (n1, n2, . . . , nk). Since the Galois group of x +1 over Q is the Klein 4-group, in which every element has order dividing 2, it follows that each ni = 1 or 2. This gives the possibilities (1, 1, 1, 1), (1, 1, 2), (2, 2). However, D is a square and so the Galois group in contained in A4; in particular it contains no transpositions, so (1, 1, 2) is ruled out. This leaves the possibilities (1, 1, 1, 1), and (2, 2), which correspond to the factorization into 4 linear factors or 2 quadratic factors, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite Programming

3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...

متن کامل

A new relaxation framework for quadratic assignment problems based on matrix splitting

Quadratic assignment problems (QAPs) are known to be among the hardest discrete optimization problems. Recent study shows that even obtaining a strong lower bound for QAPs is a computational challenge. In this paper, we first discuss how to construct new simple convex relaxations of QAPs based on various matrix splitting schemes. Then we introduce the so-called symmetric mappings that can be us...

متن کامل

A linear assignment approach for the least-squares protein morphing problem

This work addresses the computation of free-energy differences between protein conformations by using morphing (i.e., transformation) of a source conformation into a target conformation. To enhance the morphing procedure, we employ permutations of atoms: we seek to find the permutation σ that minimizes the mean-square distance traveled by the atoms. Instead of performing this combinatorial sear...

متن کامل

Math 202 - Assignment 7 Solutions

Exercise 10.3.2. Let R be a commutative ring with identity. For all positive integers n and m, R ∼= R if and only if n = m. Proof. Let φ : R → R be an isomorphism of R-modules and let I E R be a maximal ideal. Then the map φ̄ : R → R/IR given by φ̄(α) = φ(α) is a morphism of R-modules. Moreover ker φ̄ = {α ∈ R | φ̄(α) = 0} = {α ∈ R | φ(α) ∈ IR} = φ−1(IRm) = IR. Therefore by the first isomorphism th...

متن کامل

Math 202 -assignment 7

a. N1 = {(i1, i2, . . . , in) : ik ∈ Ik for all k ∈ {1, 2, . . . , n}} and b. N2 = {(x1, x2, . . . , xn) : ∑n k=1 xk = 0}. Proof. To prove (a), it suffices to show, by Proposition 1, that N1 is nonempty and x + ry ∈ N1 for all r ∈ R and all x, y ∈ N1. For the first condition, (0, 0, . . . , 0) ∈ N1 since Ik is a subgroup of R containing the additive identity 0 for all k ∈ {1, 2, . . . , n}. Tha...

متن کامل

Math 202 -assignment 1

a. N1 = {(i1, i2, . . . , in) : ik ∈ Ik for all k ∈ {1, 2, . . . , n}} and b. N2 = {(x1, x2, . . . , xn) : ∑n k=1 xk = 0}. Proof. To prove (a), it suffices to show, by Proposition 1, that N1 is nonempty and x + ry ∈ N1 for all r ∈ R and all x, y ∈ N1. For the first condition, (0, 0, . . . , 0) ∈ N1 since Ik is a subgroup of R containing the additive identity 0 for all k ∈ {1, 2, . . . , n}. Tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014